Department of Mathematical and Computational Sciences
 National Institute of Technology Karnataka, Surathkal

https://sam.nitk.ac.in/
sam@nitk.edu.in

MA222 - Computational Linear Algebra
 Problem Sheet - 5

Basic Ideas from Linear Algebra and Vector Norms

1. Show that if $A \in \mathbb{R}^{m \times n}$ has rank p, then there exists an $X \in \mathbb{R}^{m \times n}$ and a $Y \in \mathbb{R}^{n \times p}$ such that $A=X Y^{T}$, where $\operatorname{rank}(X)=\operatorname{rank}(Y)=p$.
2. Suppose $A(\alpha) \in \mathbb{R}^{m \times r}$ and $B(\alpha) \in \mathbb{R}^{r \times n}$ are matrices whose entries are differentiable functions of the scalar a. Show

$$
\frac{d}{d \alpha}[A(\alpha) B(\alpha)]=\left[\frac{d}{d \alpha} A(\alpha)\right] B(\alpha)+A(\alpha)\left[\frac{d}{d \alpha} B(\alpha)\right] .
$$

3. Suppose $A(\alpha) \in \mathbb{R}^{n \times n}$ has entries that are differentiable functions of the scalar α. Assuming $A(\alpha)$ is always nonsingular, show

$$
\frac{d}{d \alpha}\left[A(\alpha)^{-1}\right]=-A(\alpha)^{-1}\left[\frac{d}{d \alpha} A(\alpha)\right] A(\alpha)^{-1} .
$$

4. Suppose $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$ and that $\phi(x)=\frac{1}{2} x^{T} A x-x^{T} b$. Show that the gradient of ϕ is given by $\nabla \phi(x)=\frac{1}{2}\left(A^{T}+A\right) x-b$.
5. Assume that both A and $A+u v^{T}$ are nonsingular where $A \in \mathbb{R}^{n \times n}$ and $u, v \in \mathbb{R}$. Show that if x solves $\left(A+u v^{T}\right) x=b$, then it also solves a perturbed right hand side problem of the form $A x=b+\alpha x$. Give an expression for α in terms of A, u, and v.
