Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

https://sam.nitk.ac.in/

sam@nitk.edu.in

MA222 - Computational Linear Algebra Problem Sheet - 5

Basic Ideas from Linear Algebra and Vector Norms

- 1. Show that if $A \in \mathbb{R}^{m \times n}$ has rank p, then there exists an $X \in \mathbb{R}^{m \times n}$ and a $Y \in \mathbb{R}^{n \times p}$ such that $A = XY^T$, where rank(X) = rank(Y) = p.
- 2. Suppose $A(\alpha) \in \mathbb{R}^{m \times r}$ and $B(\alpha) \in \mathbb{R}^{r \times n}$ are matrices whose entries are differentiable functions of the scalar *a*. Show

$$\frac{d}{d\alpha}[A(\alpha)B(\alpha)] = \left[\frac{d}{d\alpha}A(\alpha)\right]B(\alpha) + A(\alpha)\left[\frac{d}{d\alpha}B(\alpha)\right].$$

3. Suppose $A(\alpha) \in \mathbb{R}^{n \times n}$ has entries that are differentiable functions of the scalar α . Assuming $A(\alpha)$ is always nonsingular, show

$$\frac{d}{d\alpha}[A(\alpha)^{-1}] = -A(\alpha)^{-1} \left[\frac{d}{d\alpha}A(\alpha)\right] A(\alpha)^{-1}.$$

- 4. Suppose $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ and that $\phi(x) = \frac{1}{2}x^T A x x^T b$. Show that the gradient of ϕ is given by $\nabla \phi(x) = \frac{1}{2}(A^T + A)x b$.
- 5. Assume that both *A* and $A + uv^T$ are nonsingular where $A \in \mathbb{R}^{n \times n}$ and $u, v \in \mathbb{R}$. Show that if x solves $(A + uv^T)x = b$, then it also solves a perturbed right hand side problem of the form $Ax = b + \alpha x$. Give an expression for α in terms of A, u, and v.